Imperial College Search for Axion-like particles at the LHCb London

Harry Anthony & Anni Kauniskangas Supervisor: Michael McCann Group: High-Energy Physics

Introduction

Axions and axion-like particles (ALPs) are hypothetical bosons that appear in theoretical extensions to the Standard Model. They represent some of the most popular candidates for Beyond-the-Standard-Model physics, with the QCD axions offering a solution to the strong CP problem, and light ALPs being candidates for dark matter [1,2]. While the current experimental limits on light ALPs are strict, large portions of the heavy-ALP masscoupling parameter space remain unexplored [3].

The aim of this project was to search for heavy ALPs produced in particle collisions. The data from the LHCb experiment was used to look for ALPs generated in rare B-meson decays, making the search sensitive to ALP masses up to approximately 4.4 GeV.

Preliminary Results

Validation with the $B^0 \rightarrow K^* \eta$ channel

- Expected yield calculated based on simulation signal efficiency after selection: 103 ± 18
- Measured yield: 70 ± 9
- Discrepancy possibly due to systematic uncertainties in the modelling of the signal in the Monte Carlo simulations

ALP to W coupling

Once the number of η mesons in the data (N_n) and their selection efficiencies (ε_n) were measured, they could be used to derive the branching ratio of $B^0 \rightarrow K^{*0}\gamma\gamma$ using

$$\left(BR(B \to K^*\gamma\gamma)\right)_i = \frac{\left(N_{\gamma\gamma}\right)_i}{N_{\eta}} \frac{\varepsilon_{\eta}}{\left(\varepsilon_{\gamma\gamma}\right)_i} BR(B \to K^*\eta)$$

where i labels a bin in the diphoton mass spectrum. By assuming an approximately constant efficiency $\varepsilon_{\gamma\gamma}$ across the mass range, we calculated the branching fraction as a function of mass.

Fig.1 Feynman penguin diagram of the decay channel $B \rightarrow K + \pi \gamma \gamma$

This decay involves the conversion of a b-quark to an s-quark via a process known as flavour-changing neutral current [4]. Such processes are highly suppressed in Standard Model decays, which means that the ALP signal, seen as a resonant peak in the diphoton mass spectrum, is more likely to stand out.

Event selection

The project used data from the LHCb, an experiment at the Large Hadron Collider that is dedicated to the study of b-quark physics [5]. Out of all the decay events reconstructed from the detector's outputs, we aimed to select only those corresponding to $B^0 \to K^{*0}\gamma\gamma$. This was achieved in a selection procedure involving cuts and multivariate analysis, that aimed to improve the signal-to-background ratio of the data sample.

Fitting

The background entries that remained in the data after selection had to be accounted for by fitting. Two main sources of background were considered:

Fig.4 Differential branching fraction for the decay $B^0 \rightarrow K^{*0}\gamma\gamma$ averaged over q² intervals, with the differential branching fraction axis in a logarithmic scale.

Once the branching fraction was calculated, it could be translated into the ALP to W coupling parameter [3].

Fig.5. ALP to W boson coupling constant g_{aw} as a function of diphoton mass, with the exclusion region (red) set by the measurements of the branching ratio $B^0 \to K^{*0} \gamma \gamma$. The mass regions occupied by known particles $(\pi^0, \eta, \eta', \eta_c, J/\psi)$ shaded in grey to avoid misidentification.

Conclusion & Further work

- Preliminary results on the branching fraction $B^0 \to K^{*0}\gamma\gamma$ restrict the ALP coupling to W bosons to $g_{aW} < 1 \times 10^{-4}$ MeV⁻¹ for ALP masses between (0,4000) MeV.
- The uncertainties are currently highly dominated by statistical errors. To improve our measurement precision, we aim to perform the same analysis on a larger dataset.
- For improved accuracy in our branching fraction, we can find a more accurate value of $\varepsilon_{\gamma\gamma i}$ by calculating it as a function of the diphoton mass.
- Combinatorial A combination of particles from different decays mimicking a signal.
- Partially reconstructed particles from an unwanted decay channel mimic a signal when one of its products is missed $(B \rightarrow \pi^0 K^+ \pi^- \gamma \gamma)$.

The mass spectrum of the B-meson in the selected data was fitted with a function consisting of components for signal, combinatorial background, and partially reconstructed decays. The shapes of the signal and partially reconstructed components were fixed based on simulation data analysis.

• Future work will include a resonance search across the whole diphoton mass spectrum. This will involve scanning across the diphoton spectrum with appropriate binning and comparing the likelihoods of the best-fit background-only and signal hypotheses at each step.

• The diphoton resonance search, together with the improved measurement of g_{aW} , will provide some of the first-ever limits on GeV-range ALPs from $B^0 \rightarrow K^{*0}a$ decays.

References

- R. D. Peccei and H. R. Quinn, "Constraints imposed by CP conservation in the presence of pseudoparticles," Physical Review D, vol. 16, no. 6, pp. 1791–1797, 1977. doi:10.1103/PhysRevD.16.1791.
- [2] A. Ringwald and K. Saikawa, "Axion dark matter in the post-inflationary PecceiQuinn symmetry breaking scenario," Physical Review D, vol. 93, no. 8, p. 85031, 2016. doi:10.1103/PhysRevD.93.085031.
- [3] E. Izaguirre, T. Lin, and B. Shuve, "Searching for Axion-like Particles in Flavor-Changing Neutral Current Processes," Phys. Rev. Lett., vol. 118, no. 11, p. 111802, 2017. doi:10.1103/PhysRevLett.118.111802.
- F. Archilli, M. O. Bettler, P. Owen, and K. A. Petridis, "Flavour-changing neutral currents making and [4] breaking the standard model," Nature, vol. 546, no. 7657, pp. 221–226, 2017. doi:10.1038/nature21721.
- [5] I. Belyaev, G. Carboni, N. Harnew, C. Matteuzzi, and F. Teubert, "The history of LHCb," European Physical Journal H, vol. 46, no. 1, 2021. doi:10.1140/epjh/s13129-021-00002-z